Консалтинг и автоматизация в области управления
эффективностью банковского бизнеса

Журнал ВРМ World

Отраслевые модели данных

Основное назначение моделей – это облегчение ориентации в пространстве данных и помощь в выделении деталей, важных для развития бизнеса. В современных условиях для успешного ведения бизнеса совершенно необходимо иметь четкое понимание связей между различными компонентами и хорошо представлять себе общую картину организации. Идентификация всех деталей и связей с помощью моделей позволяет наиболее эффективно использовать время и инструменты организации работы компании.

Под моделями данных понимаются абстрактные модели, описывающие способ представления данных и доступ к ним. Модели данных определяют элементы данных и связи между ними в той или иной области. Модель данных – это навигационный инструмент как для бизнес-, так и для IT-профессионалов, в котором используется определенный набор символов и слов для точного объяснения определенного класса реальной информации. Это позволяет улучшить взаимопонимание внутри организации и, таким образом, создать более гибкую и стабильную среду для работы приложений.

Модель данных однозначно определяет значение данных, которые в данном случае представляют собой структурированные данные (в противоположность неструктурированным данным, таким как, например, изображение, бинарный файл или текст, где значение может быть неоднозначным).

Как правило, выделяются модели более высокого уровня (и более общие по содержанию) и более низкого (соответственно, более детальные). Верхний уровень моделирования – это так называемые концептуальные модели данных (conceptual data models), которые дают самую общую картину функционирования предприятия или организации. Концептуальная модель включает основные концепции или предметные области, критичные для функционирования организации; обычно их количество не превышает 12-15. Такая модель описывает классы сущностей, важных для организации (бизнес-объекты), их характеристики (атрибуты) и ассоциации между парами этих классов (т.е. связи). Поскольку в бизнес-моделировании терминология еще окончательно не устоялась, в различных англоязычных источниках концептуальные модели данных могут также носить название subject area model (что можно перевести как модели предметных областей) или subject enterprise data model (предметные корпоративные модели данных).

Следующий иерархический уровень – это логические модели данных (logical data models). Они также могут называться корпоративными моделями данных или бизнес-моделями. Эти модели содержат структуры данных, их атрибуты и бизнес-правила и представляют информацию, используемую предприятием, с точки зрения бизнес-перспективы. В такой модели данные организованы в виде сущностей и связей между ними. Логическая модель представляет данные таким образом, что они легко воспринимаются бизнес-пользователями. В логической модели может быть выделен словарь данных – перечень всех сущностей с их точными определениями, что позволяет различным категориям пользователей иметь общее понимание всех входных и информационных выходных потоков модели. Следующий, более низкий уровень моделирования – это уже физическая реализация логической модели с помощью конкретных программных средств и технических платформ.

Логическая модель содержит детальное корпоративное бизнес-решение, которое обычно принимает форму нормализованной модели. Нормализация – это процесс, который гарантирует, что каждый элемент данных в модели имеет только одно значение и полностью и однозначно зависит от первичного ключа. Элементы данных организуются в группы согласно их уникальной идентификации. Бизнес-правила, управляющие элементами данных, должны быть полностью включены в нормализованную модель с предварительной проверкой их достоверности и корректности. Например, такой элемент данных, как Имя клиента, скорее всего, будет разделен на Имя и Фамилию и сгруппирован с другими соответствующими элементами данных в сущность Клиент с первичным ключом Идентификатор клиента.

Логическая модель данных не зависит от прикладных технологий, таких как база данных, сетевые технологии или инструменты отчетности, и от средств их физической реализации. В организации может быть только одна корпоративная модель данных. Логические модели обычно включают тысячи сущностей, связей и атрибутов. Например, модель данных для финансовой организации или телекоммуникационной компании может содержать порядка 3000 отраслевых понятий.

Важно различать логическую и семантическую модель данных. Логическая модель данных представляет корпоративное бизнес-решение, а семантическая – прикладное бизнес-решение. Одна и та же корпоративная логическая модель данных может быть реализована с помощью различных семантических моделей, т.е. семантические модели могут рассматриваться как следующий уровень моделирования, приближающийся к физическим моделям. При этом каждая из таких моделей будет представлять отдельный «срез» корпоративной модели данных в соответствии с требованиями различных приложений. Например, в корпоративной логической модели данных сущность Клиент будет полностью нормализована, а в семантической модели для витрины данных может быть представлена в виде многомерной структуры.

У компании может быть два пути создания корпоративной логической модели данных: строить ее самостоятельно или воспользоваться готовой отраслевой моделью (industry logical data model). В данном случае различия в терминах отражают лишь разные подходы к построению одной и той же логической модели. В том случае, если компания самостоятельно разрабатывает и внедряет собственную логическую модель данных, то такая модель, как правило, носит название просто корпоративной логической модели. Если же организация решает воспользоваться готовым продуктом профессионального поставщика, то тогда можно говорить об отраслевой логической модели данных. Последняя представляет собой готовую логическую модель данных, с высокой степенью точности отражающую функционирование определенной отрасли. Отраслевая логическая модель – это предметно-ориентированный и интегрированный вид всей информации, которая должна находиться в корпоративном Хранилище данных для получения ответов как на стратегические, так и на тактические бизнес-вопросы. Как и любая другая логическая модель данных, отраслевая модель не зависит от прикладных решений. Она также не включает производные данные или другие вычисления для более быстрого извлечения данных. Как правило, большинство логических структур такой модели находят хорошее воплощение в ее эффективной физической реализации. Такие модели разрабатываются многими поставщиками для самых различных областей деятельности: финансовой сферы, производства, туризма, здравоохранения, страхования и т.д.

Отраслевая логическая модель данных содержит информацию, общую для отрасли, и поэтому не может быть исчерпывающим решением для компании. Большинству компаний приходится увеличивать модель в среднем на 25% за счет добавления элементов данных и расширения определений. Готовые модели содержат только ключевые элементы данных, а остальные элементы должны быть добавлены к соответствующим бизнес-объектам в процессе установки модели в компании.

Отраслевые логические модели данных содержат значительное количество абстракций. Под абстракциями имеется в виду объединение аналогичных понятий под общими названиями, такими как Событие или Участник. Это добавляет отраслевым моделям гибкости и делает их более унифицированными. Так, понятие События применимо ко всем отраслям.

Специалист в области бизнес-аналитики (Business Intelligence) Стив Хобермэн (Steve Hoberman) выделяет пять факторов, которые необходимо принимать во внимание при решении вопроса о приобретении отраслевой модель данных. Первый – это время и средства, необходимые для построения модели. Если организации необходимо быстро добиться результатов, то отраслевая модель даст преимущество. Использование отраслевой модели не может немедленно обеспечить картину всей организации, но способно сэкономить значительное количество времени. Вместо собственно моделирования время будет потрачено на связывание существующих структур с отраслевой моделью, а также на обсуждение того, как лучше ее настроить под нужды организации (например, какие определения должны быть изменены, а какие элементы данных – добавлены).

Второй фактор – это время и средства, необходимые для поддержания модели в работоспособном состоянии. Если корпоративная модель данных не является частью методологии, которая позволяет следить за соблюдением ее точности и соответствия современным стандартам, то такая модель очень быстро устаревает. Отраслевая модель данных может предотвратить риск такого развития событий, поскольку она поддерживается в обновленном состоянии за счет внешних ресурсов. Безусловно, изменения, происходящие внутри организации, должны отражаться в модели силами самой компании, но отраслевые перемены будут воспроизводиться в модели ее поставщиком.

Третий фактор – опыт в оценке рисков и моделировании. Создание корпоративной модели данных требует квалифицированных ресурсов как со стороны бизнеса, так и IT-персонала. Как правило, менеджеры хорошо знают либо работу организации в целом, либо деятельность конкретного отдела. Лишь немногие их них обладают как широкими (в масштабах всей компании), так и глубокими (в рамках подразделений) знаниями о своем бизнесе. Большинство менеджеров обычно хорошо знают только одну область. Поэтому, для того чтобы получить общекорпоративную картину, требуются существенные бизнес-ресурсы. Это увеличивает и требования к IT-персоналу. Чем больше бизнес-ресурсов требуется для создания и тестирования модели, тем более опытными должны быть аналитики. Они должны не только знать, как получить информацию от бизнес-персонала, но также уметь находить общую точку зрения в спорных областях и быть способными представлять всю эту информацию в интегрированном виде. Тот, кто занимается созданием модели (во многих случаях это тот же аналитик), должен обладать хорошими навыками моделирования. Создание корпоративных логических моделей требует моделирования «для будущего» и способности конвертировать сложный бизнес в буквальном смысле «в квадраты и линии».

С другой стороны, отраслевая модель позволяет использовать опыт сторонних специалистов. При создании отраслевых логических моделей используются проверенные методологии моделирования и коллективы опытных профессионалов, для того чтобы избежать распространенных и дорогостоящих проблем, которые могут возникнуть при разработке корпоративных моделей данных внутри самой организации.

Четвертый фактор – существующая инфраструктура приложений и связи с поставщиками. Если организация уже использует много инструментов одного и того же поставщика и имеет налаженные связи с ним, то имеет смысл и отраслевую модель заказывать у него же. Такая модель сможет свободно работать с другими продуктами этого же поставщика.

Пятый фактор – внутриотраслевой обмен информацией. Если компании нужно осуществлять обмен данными с другими организациями, работающими в той же области, то отраслевая модель может быть очень полезна в этой ситуации. Организации внутри одной и той же отрасли пользуются схожими структурными компонентами и терминологией. В настоящее время в большинстве отраслей компании вынуждены обмениваться данными для успешного ведения бизнеса.

Наиболее эффективны отраслевые модели, предлагаемые профессиональными поставщиками. Высокая эффективность их использования достигается благодаря значительному уровню детальности и точности этих моделей. Они обычно содержат много атрибутов данных. Кроме того, создатели этих моделей не только обладают большим опытом моделирования, но и хорошо разбираются в построении моделей для определенной отрасли.

Отраслевые модели данных обеспечивают компаниям единое интегрированное представление их бизнес-информации. Многим компаниям бывает непросто осуществить интеграцию своих данных, хотя это является необходимым условием для большинства общекорпоративных проектов. По данным исследования Института Хранилищ данных (The Data Warehousing Institute, TDWI), более 69% опрошенных организаций обнаружили, что интеграция является существенным барьером при внедрении новых приложений. Напротив, осуществление интеграции данных приносит компании ощутимый доход.

Отраслевая модель данных, помимо связей с уже существующими системами, дает большие преимущества при осуществлении общекорпоративных проектов, таких как планирование ресурсов предприятия (Enterprise Resource Planning, ERP), управление основными данными, бизнес-аналитика, повышение качества данных и повышение квалификации сотрудников.

Таким образом, отраслевые логические модели данных являются эффективным инструментом интеграции данных и получения целостной картины бизнеса. Использование логических моделей представляется необходимым шагом на пути создания корпоративных Хранилищ данных.

Публикации

  1. Стив Хобермэн (Steve Hoberman). Использование отраслевой логической модели данных в качестве корпоративной модели (Leveraging the Industry Logical Data Model as Your Enterprise Data Model).
  2. Клодиа Имхоф (Claudia Imhoff). Оперативное создание Хранилищ данных и выполнение проектов Business Intelligence с помощью моделирования данных (Fast-Tracking Data Warehousing & Business Intelligence Projects via Intelligent Data Modeling)