Консалтинг и автоматизация в области управления
эффективностью банковского бизнеса

Публикации

RM-Magazin

OLAP-клиент - OLAP-сервер. Компромисс выбора

Тема расширения информационных систем аналитическими сервисами вызывает все больший интерес у российских ИТ-специалистов. Такие сервисы, как правило, предназначаются для многомерного анализа данных, оценки динамики, выявления тенденций, прогнозирования по принципу "что если?" и т.д. Их цель - способствовать принятию решений. Чаще всего в основе создания таких сервисов лежит технология комплексного многомерного анализа данных - OLAP .

На сегодняшний день в российской компьютерной печати и Интернете опубликовано немало статей по этой тематике, в том числе с описанием современных программных продуктов, реализующих технологию OLAP. Мы же предлагаем вашему вниманию статью, в которой пытаемся привести сравнение основных классов OLAP-продуктов: OLAP-серверов и OLAP-клиентов. Практика показывает, что такое сравнение часто необходимо ИТ-специалистам и, в особенности, тем, кто выбирает OLAP-инструмент, чтобы использовать его при создании информационной системы.

Классификация OLAP-продуктов

Итак, суть OLAP заключается в том, что исходная для анализа информация представляется в виде многомерного куба, и обеспечивается возможность произвольно манипулировать ею и получать нужные информационные разрезы - отчеты. При этом конечный пользователь видит куб как многомерную динамическую таблицу, которая автоматически суммирует данные (факты) в различных разрезах (измерениях), и позволяет интерактивно управлять вычислениями и формой отчета. Выполнение этих операций обеспечивается OLAP-машиной (или машиной OLAP-вычислений).

На сегодняшний день в мире разработано множество продуктов, реализующих OLAP-технологии. Чтобы легче было ориентироваться среди них, используют классификации OLAP-продуктов: по способу хранения данных для анализа и по месту нахождения OLAP-машины. Рассмотрим подробнее каждую категорию OLAP-продуктов.

Начнем с классификации по способу хранения данных. Напомним, что многомерные кубы строятся на основе исходных и агрегатных данных. И исходные и агрегатные данные для кубов могут храниться как в реляционных, так и многомерных базах данных. Поэтому в настоящее время применяются три способа хранения данных: MOLAP (Multidimensional OLAP), ROLAP (Relational OLAP) и HOLAP (Hybrid OLAP). Соответственно, OLAP-продукты по способу хранения данных делятся на три аналогичные категории:

  1. В случае MOLAP, исходные и агрегатные данные хранятся в многомерной БД или в многомерном локальном кубе.
  2. В ROLAP-продуктах исходные данные хранятся в реляционных БД или в плоских локальных таблицах на файл-сервере. Агрегатные данные могут помещаться в служебные таблицы в той же БД. Преобразование данных из реляционной БД в многомерные кубы происходит по запросу OLAP-средства.
  3. В случае использования HOLAP архитектуры исходные данные остаются в реляционной базе, а агрегаты размещаются в многомерной. Построение OLAP-куба выполняется по запросу OLAP-средства на основе реляционных и многомерных данных.

Следующая классификация - по месту размещения OLAP-машины. По этому признаку OLAP-продукты делятся на OLAP-серверы и OLAP-клиенты:

  • В серверных OLAP-средствах вычисления и хранение агрегатных данных выполняются отдельным процессом - сервером. Клиентское приложение получает только результаты запросов к многомерным кубам, которые хранятся на сервере. Некоторые OLAP-серверы поддерживают хранение данных только в реляционных базах, некоторые - только в многомерных. Многие современные OLAP-серверы поддерживают все три способа хранения данных: MOLAP, ROLAP и HOLAP.
  • OLAP-клиент устроен по-другому. Построение многомерного куба и OLAP-вычисления выполняются в памяти клиентского компьютера. OLAP-клиенты также делятся на ROLAP и MOLAP. А некоторые могут поддерживать оба варианта доступа к данным.

У каждого из этих подходов, есть свои "плюсы" и "минусы". Вопреки распространенному мнению о преимуществах серверных средств перед клиентскими, в целом ряде случаев применение OLAP-клиента для пользователей может оказаться эффективнее и выгоднее использования OLAP-сервера. В этой статье мы подробнее остановимся на сильных сторонах клиентских OLAP-средств. В качестве примера будем использовать OLAP-клиент со встроенной OLAP-машиной "Контур Стандарт" разработки российской компании Intersoft Lab.

OLAP-клиент - OLAP-сервер: "за" и "против"

При построении информационной системы OLAP-функциональность может быть реализована как серверными, так и клиентскими OLAP-средствами. На практике выбор является результатом компромисса эксплуатационных показателей и стоимости программного обеспечения. Посмотрим, из чего складывается покупательская привлекательность инструментов класса OLAP-клиент, и на что следует обратить внимание, отдавая предпочтение этому классу OLAP-продуктов.

Объем обрабатываемых данных

Объем данных определяется совокупностью следующих характеристик: количество записей, количество измерений, количество элементов измерений, длина измерений и количество фактов. Известно, что OLAP-сервер может обрабатывать большие объемы данных, чем OLAP-клиент при равной мощности компьютера.

Это объясняется тем, что OLAP-сервер хранит на жестких дисках многомерную базу данных, содержащую заранее вычисленные кубы.

Клиентские программы в момент выполнения OLAP-операций выполняют к ней запросы на SQL-подобном языке, получая не весь куб, а его отображаемые фрагменты. OLAP-клиент в момент работы должен иметь в оперативной памяти весь куб. В случае ROLAP-архитектуры, необходимо предварительно загрузить в память весь используемый для вычисления куба массив данных. Кроме того, при увеличении числа измерений, фактов или элементов измерений количество агрегатов растет в геометрической прогрессии.

Таким образом, объем данных, обрабатываемых OLAP-клиентом, находится в прямой зависимости от объема оперативной памяти ПК пользователя.

Однако заметим, что большинство OLAP-клиентов обеспечивают выполнение распределенных вычислений. Поэтому под количеством обрабатываемых записей, которое ограничивает работу клиентского OLAP-средства, понимается не объем первичных данных корпоративной БД, а размер агрегированной выборки из нее. OLAP-клиент генерирует запрос к СУБД, в котором описываются условия фильтрации и алгоритм предварительной группировки первичных данных. Сервер находит, группирует записи и возвращает компактную выборку для дальнейших OLAP-вычислений. Размер этой выборки может быть в десятки и сотни раз меньше объема первичных, не агрегированных записей. Следовательно, потребность такого OLAP-клиента в ресурсах ПК существенно снижается.

Кроме того, на количество измерений накладывают ограничения возможности человеческого восприятия. Известно, что средний человек может одновременно оперировать 3-4, максимум 8 измерениями. При большем количестве измерений в динамической таблице восприятие информации существенно затрудняется. Этот фактор следует учитывать при предварительном расчете оперативной памяти, которая может потребоваться OLAP-клиенту.

Длина измерений также влияет на размер адресного пространства OLAP-средства, занятого при вычислении OLAP-куба. Чем длиннее измерения, тем больше ресурсов требуется для выполнения предварительной сортировки многомерного массива, и наоборот. Только короткие измерения в исходных данных - еще один аргумент в пользу OLAP-клиента.

Производительность системы

Эта характеристика определяется двумя рассмотренными выше факторами: объемом обрабатываемых данных и мощностью компьютеров. При возрастании количества, например, измерений, производительность всех OLAP-средств снижается за счет значительного увеличения количества агрегатов, но при этом темпы снижения разные. Продемонстрируем эту зависимость на графике.



Схема 1. Зависимость производительности клиентских и серверных OLAP-средств от увеличения объема данных

Скоростные характеристики OLAP-сервера менее чувствительны к росту объема данных. Это объясняется различными технологиями обработки запросов пользователей OLAP-сервером и OLAP-клиентом. Например, при операции детализации OLAP-сервер обращается к хранимым данным и "вытягивает" данные этой "ветки". OLAP-клиент же вычисляет весь набор агрегатов в момент загрузки.

Однако, до определенного объема данных производительность серверных и клиентских средств является сопоставимой. Для OLAP-клиентов, поддерживающих распределенные вычисления, область сопоставимости производительности может распространяться на объемы данных, покрывающие потребности в OLAP-анализе огромного количества пользователей. Это подтверждают результаты внутреннего тестирования MS OLAP Server и OLAP-клиента "Контур Стандарт" . Тест выполнен на ПК IBM PC Pentium Celeron 400 МГц, 256 Mb для выборки в 1 миллион уникальных (т.е. агрегированных) записей с 7 измерениями, содержащими от 10 до 70 членов. Время загрузки куба в обоих случаях не превышает 1 секунды, а выполнение различных OLAP-операций (drill up, drill down, move, filter и др.) выполняется за сотые доли секунды.

Когда размер выборки превысит объем оперативной памяти, начинается обмен (swapping) с диском и производительность OLAP-клиента резко падает. Только с этого момента можно говорить о преимуществе OLAP-сервера.

Следует помнить, что точка "перелома" определяет границу резкого удорожания OLAP-решения. Для задач каждого конкретного пользователя эта точка легко определяется по тестам производительности OLAP-клиента. Такие тесты можно получить у компании-разработчика.

Кроме того, стоимость серверного OLAP-решения растет при увеличении количества пользователей. Дело в том, что OLAP-сервер выполняет вычисления для всех пользователей на одном компьютере. Соответственно, чем больше количество пользователей, тем больше оперативной памяти и процессорной мощности требуется компьютеру.

Таким образом, если объемы обрабатываемых данных лежат в области сопоставимой производительности серверных и клиентских систем, то при прочих равных условиях, использование OLAP-клиента будет выгоднее.

Организация архитектур с прямым доступом к первичным данным

Использование OLAP-сервера в "классической" идеологии предусматривает выгрузку данных реляционных СУБД в многомерную БД. Выгрузка выполняется за определенный период, поэтому данные OLAP-сервера не отражают состояние на текущий момент. Этого недостатка лишены только те OLAP-серверы, которые поддерживают ROLAP-режим работы.

Аналогичным образом, целый ряд OLAP-клиентов позволяет реализовать ROLAP- и Desktop-архитектуру с прямым доступом к БД. Это обеспечивает анализ исходных данных в режиме on-line.

Мощность ПК пользователей

OLAP-сервер предъявляет минимальные требования к мощности клиентских терминалов. Объективно, требования OLAP-клиента выше, т.к. он производит вычисления в оперативной памяти ПК пользователя. Состояние парка аппаратных средств конкретной организации - важнейший показатель, который должен быть учтен при выборе OLAP-средства. Но и здесь есть свои "плюсы" и "минусы". OLAP-сервер не использует огромную вычислительную мощность современных персональных компьютеров. В случае, если организация уже имеет парк современных ПК, неэффективно применять их лишь в качестве отображающих терминалов и в тоже время делать дополнительные затраты на центральный сервер.

Если мощность компьютеров пользователей "оставляет желать лучшего", OLAP-клиент будет работать медленно или не сможет работать вовсе. Покупка одного мощного сервера может оказаться дешевле модернизации всех ПК.

Здесь полезно принять во внимание тенденции в развитии аппаратного обеспечения. Поскольку объемы данных для анализа являются практически константой, то стабильный рост мощности ПК будет приводить к расширению возможностей OLAP-клиентов и вытеснению ими OLAP-серверов в сегмент очень больших баз данных.

Сетевой трафик

При использовании OLAP-сервера по сети на ПК клиента передаются только данные для отображения, в то время как OLAP-клиент получает весь объем данных первичной выборки. Поэтому там, где применяется OLAP-клиент, сетевой трафик будет выше.

Но, при применении OLAP-сервера операции пользователя, например, детализация, порождают новые запросы к многомерной базе, а, значит, новую передачу данных. Выполнение же OLAP-операций OLAP-клиентом производится в оперативной памяти и, соответственно, не вызывает новых потоков данных в сети.

Также необходимо отметить, что современное сетевое аппаратное обеспечение обеспечивает высокий уровень пропускной способности.

Поэтому в подавляющем большинстве случаев анализ БД "средних" размеров с помощью OLAP-клиента не будет тормозить работу пользователя.

Затраты на внедрение и сопровождение

Стоимость OLAP-сервера достаточно высока. Сюда же следует плюсовать стоимость выделенного компьютера и постоянные затраты на администрирование многомерной базы. Кроме того, внедрение и сопровождение OLAP-сервера требует от персонала достаточно высокой квалификации.

Стоимость OLAP-клиента на порядок ниже стоимости OLAP-сервера. Администрирования и дополнительного технического оборудования под сервер не требуется. К квалификации персонала при внедрении OLAP-клиента высоких требований не предъявляется. OLAP-клиент может быть внедрен значительно быстрее OLAP-сервера.

Принципы работы OLAP-клиентов

Разработка аналитических приложений с помощью клиентских OLAP-средств - процесс быстрый и не требующий специальной подготовки исполнителя. Пользователь, знающий физическую реализацию базы данных, может разработать аналитическое приложение самостоятельно, без привлечения ИТ-специалиста.

При использовании OLAP-сервера необходимо изучить 2 разные системы, иногда от различных поставщиков, - для создания кубов на сервере, и для разработки клиентского приложения. OLAP-клиент предоставляет единый визуальный интерфейс для описания кубов и настройки к ним пользовательских интерфейсов.

Рассмотрим процесс создания OLAP-приложения с помощью клиентского инструментального средства.



Схема 2. Создание OLAP-приложения с помощью клиентского ROLAP-средства

Принцип работы ROLAP-клиентов - предварительное описание семантического слоя, за которым скрывается физическая структура исходных данных. При этом источниками данных могут быть: локальные таблицы, РСУБД. Список поддерживаемых источников данных определяется конкретным программным продуктом. После этого пользователь может самостоятельно манипулировать понятными ему объектами в терминах предметной области для создания кубов и аналитических интерфейсов.

Принцип работы клиента OLAP-сервера иной. В OLAP-сервере при создании кубов пользователь манипулирует физическими описаниями БД.

При этом в самом кубе создаются пользовательские описания. Клиент OLAP-сервера настраивается только на куб.

Поясним принцип работы ROLAP-клиента на примере создания динамического отчета о продажах (см. схему 2). Пусть исходные данные для анализа хранятся в двух таблицах: Sales и Deal.

При создании семантического слоя источники данных - таблицы Sales и Deal - описываются понятными конечному пользователю терминами и превращаются в "Продукты" и "Сделки". Поле "ID" из таблицы "Продукты" переименовывается в "Код", а "Name" - в "Товар" и т.д.

Затем создается бизнес-объект "Продажи". Бизнес-объект - это плоская таблица, на основе которой формируется многомерный куб. При создании бизнес-объекта таблицы "Продукты" и "Сделки" объединяются по полю "Код" товара. Поскольку для отображения в отчете не потребуются все поля таблиц - бизнес-объект использует только поля "Товар", "Дата" и "Сумма".

Далее на базе бизнес-объекта создается OLAP-отчет. Пользователь выбирает бизнес-объект и перетаскивает его атрибуты в области колонок или строк таблицы отчета.

В нашем примере на базе бизнес-объекта "Продажи" создан отчет по продажам товаров по месяцам.

При работе с интерактивным отчетом пользователь может задавать условия фильтрации и группировки такими же простыми движениями "мышью". В этот момент ROLAP-клиент обращается к данным в кэше. Клиент же OLAP-сервера генерирует новый запрос к многомерной базе данных. Например, применив в отчете о продажах фильтр по товарам, можно получить отчет о продажах интересующих нас товаров.

Все настройки OLAP-приложения могут храниться в выделенном репозитории метаданных, в приложении или в системном репозитории многомерной базы данных. Реализация зависит от конкретного программного продукта.

Заключение

Итак, в каких случаях применение OLAP-клиента для пользователей может оказаться эффективнее и выгоднее использования OLAP-сервера?

Экономическая целесообразность применения OLAP-сервера возникает, когда объемы данных очень велики и непосильны для OLAP-клиента, иначе более оправдано применение последнего. В этом случае OLAP-клиент сочетает в себе высокие характеристики производительности и низкую стоимость.

Мощные ПК аналитиков - еще один довод в пользу OLAP-клиентов. При применении OLAP-сервера эти мощности не используются. Среди преимуществ OLAP-клиентов можно также назвать следующее:

  • Затраты на внедрение и сопровождение OLAP-клиента существенно ниже, чем затраты на OLAP-сервер.
  • При использовании OLAP-клиента со встроенной машиной передача данных по сети производится один раз. При выполнении OLAP-операций новых потоков данных не порождается.
  • Настройка ROLAP-клиентов упрощена за счет исключения промежуточного звена - создания многомерной базы.

В следующей статье будут подробно рассмотрены различные архитектуры OLAP-клиентов и варианты реализации информационно-аналитических систем с применением OLAP-клиентов.